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ABSTRACT: The need for batteries is rising as 

new energy electric cars and smart grids emerge 

quickly. A key component of the battery-powered 

energy storage system is the battery management 

system (BMS). The most popular state estimation 

techniques for BMSs are reviewed in detail in this 

study. From the viewpoints of remaining capacity 

and energy estimate, power capability prediction, 

lifespan and health prognoses, and other important 

indicators in BMS, the state estimation 

methodologies are examined. This present paper, 

through the analysis of literature, includes the state 

of charge (SOC) reviewed. 

Keywords: Electric Vehicle, Battery management 

system, State of Charge (SOC). 

 

I. INTRODUCTION 
One of the most important technologies 

for the creation of smart grids and new energy 

electric cars is energy storage technology [1]. 

Benefiting from the quick rise in new energy 

electric car production, among all currently used 

chemical and physical energy storage options, 

lithium-ion batteries are the ones that are evolving 

the quickest [2]. The public's perception of electric 

vehicles has changed recently as a result of the high 

demands and difficulties that battery management 

technology must overcome due to the frequent fire 

accidents involving electric vehicles [3]. The 

lithium-ion battery management system (BMS), 

one of the essential elements of electric cars, is 

essential for the commercialization and 

manufacturing of electric vehicles. As a result, 

creating sophisticated and intelligent BMSs for 

lithium-ion battery packs has been a popular area of 

research.The primary technological challenges 

limiting battery technology advancement. These 

three areas of management technology can be 

concluded: (1) Due to the extremely nonlinear 

nature of the lithium battery system, which affects 

aging on several time and spatial scales (such as 

nanoscale active materials, millimeter cells, and 

meter battery packs)(2) The internal states of the 

battery cannot be determined by a direct measuring 

method and are easily influenced by ambient 

factors such as temperature, noise, etc.Power 

batteries are becoming larger, which decreases the 

representativeness of measured values and the 

predictability of battery states, making it difficult to 

determine the internal states of the battery 

accurately; (3) the inconsistencies of the battery 

cells have a direct impact on the performance of the 

pack, raising the battery's unaddressed risk. Electric 

cars are mostly unaffected by certain effective 

safety precautions for small battery systems, and it 

is challenging to regulate the battery pack 

accurately and efficiently. Therefore, sophisticated 

BMSs should be created to address the issues [4,5]. 

Effective battery management in electric 

cars is crucial for enhancing driving range, 

prolonging battery life, lowering costs, and 

assuring vehicle safety. According to Figure 1, a 

typical Battery Management System (BMS) in a 

real-world vehicle is mostly made up of a range of 

sensors, actuators, controllers, and communication 

lines. For problem detection, equalization 

management, and other purposes, more BMSs have 

been deployed. The sampling circuit's primary 

function among them is to measure the signals for 

voltage, current, and temperature. The control 

circuit then employs a variety of algorithms to 

estimate the State of Charge (SOC), State of Health 

(SOH), State of Power (SOP), and State of Life 

(SOL) of batteries using these signals. 
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Figure 1. The general function of a battery 

management system. 

 

A battery management system's battery 

level of charge functions similarly to a traditional 

fuel car's fuel meter. The primary purpose of the 

SOC is to alert the driver of the battery's intuitive 

status while also preventing issues like 

overcharging and over-discharging. The estimate of 

the SOC has been an issue under investigation. 

Since the battery is an extremely intricate and non-

linear electrochemical component, its performance 

depends on both its internal and external 

circumstances. At the same time, the battery's 

performance should consider both the variability of 

battery performance within the battery pack as well 

as the performance of the individual battery.The 

battery’s charged status will also face significant 

difficulties due to battery aging, cycle life, 

temperature, and other aspects. SOC was first 

studied by academics and researchers in the 1960s. 

The SOC estimate of batteries has been the subject 

of much scientific study over the past 50 years, but 

a more potent solution is still required. Therefore, 

to be useful for academics, researchers, and car 

businesses, this study examines the current SOC 

estimating techniques. 

 

II DEFINITION OF SOC 
The SOC of the battery refers to the ratio 

of the current remaining battery capacity to the 

available capacity under certain conditions 

(temperature, charge, and discharge ratio, etc.), and 

its mathematical expression is shown in Equation 

(1).  

 
 Understanding the denominator of 

Equation (1), which represents the battery capacity, 

as well as the numerator of the equation, is 

challenging. The battery capacity as it is defined 

here is inconsistent. Typically, the denominator of 

Equation (1) represents the rated capacity, factory 

capacity, cycle capacity, or current battery real 

capacity. The most common capacity in the 

theoretical analysis is rated capacity, which is a 

traditional definition of the denominator in 

Equation (1). According to this technique, the rated 

capacity is treated as a fixed value, and the SOC is 

calculated by deducting the charge or discharge 

from the rated capacity.[6] 

Currently, most electric cars describe SOC 

in terms of the amount of electric charge, therefore 

in this equation, Qc stands for the battery's 

remaining power at the time of computation n and 

has the unit Ah; Q stands for the battery's total 

capacity, and has the unit Ah [7]. The battery 

charge is Qe.In actuality, the battery typically 

changes with a variety of conditions, necessitating 

a modification to this equation [8].The more 

popular equation is (2). 

 
The battery's nominal capacity denoted as 

SOC(t), is expressed in Ah in this equation. The 

coulomb efficiency, also known as the discharged 

efficiency, is the proportion of a battery's discharge 

capacity to its charge capacity within a single loop 

(= Q/Qn). Because there is a certain loss, such as 

the battery experiencing irreversible side reactions, 

the input charge frequently is unable to convert all 

the active compounds into energy. Consequently, 

the value is typically lower than 100%. The 

coulomb efficiency of modern lithium-ion batteries 

is 99.9% or more. The Peukert equation, which 

combines the observed residual charge and 

discharge current of the two batteries, may be used 

to calculate its value.Nevertheless, the coulomb 

efficiency is challenging to quantify in practice 

since it is very responsive tothe impact of 

temperature, battery aging, internal resistance, and 

charge and discharge current [9]. 

The status of health (SOH) should be 

considered while discussing SOC. SOH is a good 

indicator of how old a battery is. Different types of 

variables have an impact on SOH. Due to the 

impact of temperature, ventilation, and self-

discharge level while using a battery assembly 

vehicle,the electrolyte content, and other variations 

among the batteries in the battery pack may raise to 

some extent the inconsistencies of battery voltage, 

internal resistance, capacity, and other 

characteristics, which will impact the value of 

SOH. The two have the following relationship. 

SOC(t) = SOH(t) − DOD(t).                                          

(3) 

In Equation (3), SOH(t) is the state of 

charge. When the battery is a new one, we consider 

SOH as 100%. DOD(t) (depth of discharge) 

represents the percentage of discharge of the 
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battery and the rated capacity of the battery. DOD 

is considered when the discharge of the battery 

exceeds at least 80% of its rated capacity 

 

III SOC ESTIMATION METHODS 
SOC plays a big role in BMS. There are 

three basic kinds of estimating methodology based 

on theoretical and experimental properties: look-up 

table method, model-based estimation techniques, 

data-driven estimation methods, and filter-based 

method. Each category uses a different 

methodology to evaluate the efficacy of SOC. We 

give a brief conceptual overview of each category 

in this section. 

 

3.1 Look-up table method: The look-up table 

method is convenient and straightforward, which 

measures SOC based on the mapping relationship 

between characteristic parameters (such as 

impedance spectroscopy, internal resistance, OCV, 

etc.) and SOC. 

 

3.1.1 Open-circuit voltage (OCV) look-up table 

method: The battery voltage after a prolonged 

period of idleness without load is known as the 

OCV, and it has a nonlinear relationship to SOC 

[10]. The method's entire implementation 

procedure is provided in Reference [11]. The OCV-

SOC table is created by measuring the OCV under 

various SOC situations. In actuality, the OCV and 

OCV-SOC table are used to calculate the SOC. The 

procedure is straightforward and uncomplicated, 

but the battery must be left standing for a 

considerable amount of time to guarantee that the 

measured voltage is identical to OCV. These 

elements are added to the OCV-SOC chart [12] in 

consideration of how temperature, material, and 

aging affect the connection between OCV and 

SOC. To determine battery SOC, Pecht et al. [13] 

created an off-line OCV-SOC-Temperature table. 

Additionally, the hysteresis effect of OCV is a 

crucial element in determining OCV accuracy [14]. 

For LiFePO4 batteries, the hysteresis effect may be 

recognized as the difference in OCV under the 

same SOC during charging and discharging [15]. 

Therefore, an inaccurate OCV-SOC relationship 

without considering the hysteresis effect may lead 

to unacceptable SOC errors. 

 

3.1.2 Impedance look-up table method: The two 

variables impedance and SOC are related. The 

impedance look-up table technique is established 

by applying a certain frequency of current to the 

battery, which identifies several SOC-related 

parameters by nonlinear fitting or a parameter 

identification algorithm [16]. The impedance 

characteristics include constant phase element, 

internal ohmic resistance, polarisation capacitance, 

polarisation resistance, and inductance [17]. These 

techniques could result in substantial prediction 

errors if the impedance amplitude is minimal. 

Battery aging may have an impact on the SOC 

look-up table method's accuracy, according to 

reference [18]. Additionally, non-linear variations 

in impedance and SOC may be caused by the 

current, the surrounding temperature, and other 

variables [19]. The effects of the current ratio, 

aging, and temperature on impedance need to be 

consideredto guarantee the accuracy of the SOC 

estimate. the drawback of the look-up table 

approach is that the battery must be rested for a 

long period to maintain the stability of the internal 

electrochemistry and allow for reasonably accurate 

measurement of the parameters. Additionally, the 

precision of the SOC table has a significant impact 

on the dependability of SOC measurement. As a 

result, the approach is inappropriate for 

applications requiring real-time and high-precision 

SOC estimation, such as those in aviation, 

aerospace, and military. 

 

3.2 -hour integral method: Compared with the 

above methods, the ampere-hour integral method is 

more straightforward, where the SOC of the battery 

is calculated by current integration [20]. 

Although this approach is straightforward, 

it has drawbacks. The sensor error will build as a 

result of the open-loop computation, which might 

result in a more significant SOC error. Additionally, 

variations in rated capacity and Coulomb efficiency 

can be brought on by aging and temperature, which 

has an impact on how accurately SOC is calculated. 

Additionally, the look-up table approach is used to 

establish the initial SOC, allowing any beginning 

errors to propagate through the whole SOC 

computation process. To increase its resilience, this 

strategy is typically paired with the model-based 

method or the data-driven method. 

3.3 Filter-based method; Typically, the filter-based 

method can be roughly categorized into: LKF, EKF, 

AEKF, SPKF, UKF, and AUKF. 

 

3.3.1 Linear Kalman Filter(LKF): The Kalman 

Filter (KF) has been a popular tool for estimating 

battery conditions for a while [21]. It may be 

thought of as a two-step recursive process that 

begins by forecasting the system state and output 

and ends by modifying the system state in response 

to output errors [22]. KF cannot be utilized directly 

with the OCVfunction because of its nonlinear 

nature. A technique of SOC estimate of LIB 
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employing an LKF based on local linearization was 

put out in Reference [23]. Because of the piecewise 

linearization of the OCV function, LKF may be 

used to estimate the SOC. A hybrid estimate 

approach of SOC and SOF based on LKF was 

proposed by Chen et al. [24]. A combination 

technique of SOC and capacity estimate was 

proposed by Wei et al. [25]. Recursive least squares 

and the LKF are used, respectively, to estimate the 

SOC and capacity. For battery SOC estimates, 

many KF versions have been utilized recently. 

 

3.3.2 Extended Kalman Filter(EKF): EKF is a 

suboptimal filter since its fundamental tenet is to 

linearize the nonlinear system and conduct Kalman 

filtering [26]. Based on the linearization concept of 

nonlinear functions, the EKF increases the 

nonlinear OCV function with partial derivatives 

[27]. The SOC estimate approach, which is based 

on a reduced-order battery model and EKF, was 

suggested in Ref. [28] to address the issue that the 

model parameters are susceptible to change as a 

result of the battery's nonlinear behavior. According 

to experimental findings, SOC errors are under 2%. 

A dual-time scale EKF was used to construct a 

SOC estimate method for the battery pack in Ref. 

[29]. The cell was calculated after the average 

SOC.  

 

SOC was calculated using the disparity 

between the solitary and typical cells. The findings 

indicated that the pack SOC error is under 2%. the 

direct accuracy of the rated capacity has an impact 

on the accuracy of SOC estimate findings. SOC 

and capacity were simultaneously calculated by 

EKF in Ref. [30], and SOC error was further 

decreased. A reliable estimate SOC approach 

employing EKF for the battery was put out in 

Reference [31] SOC was corrected by using the 

modelling error as a constant bias state vector. The 

linearization of the OCV function and the model 

parameters both affect how accurate the EKF 

is[32]. To estimate battery SOC, numerous better 

techniques have been put forth. These techniques 

may be categorized into two groups: (1) model 

improvement, and (2) algorithm improvement. The 

battery's thermal-electrochemical model was 

created in Reference [33]. Temperature is used to 

adjust the model parameters, and EKF calculated 

the SOC. An improved SOC estimating approach 

based on EKF that considered the impacts of 

various currents, SOCs, and hysteresis effects on 

the model parameters was developed. 

 

The suggested approach can mitigate the 

impact of truncation mistakes. A multi-time scale 

estimation approach based on EKF is suggested 

and used to estimate the SOC and SOH of batteries 

together. The filter with greater performance than 

EKF is used to estimate SOC to lower the 

estimation error. 

3.3.3 Adaptive Extended Kalman Filter (AEKF): 

The covariance of the two types of noise in the 

AEKF is adaptive. The divergence or bias of the 

algorithm is avoided by AEKF thanks to the 

adaptive covariance of process noise and 

measurement noise. An online OCV estimate 

technique was developed in Ref. [34] utilizing 

AEKF, and SOC was calculated by consulting the 

OCV-SOC table. The correlation between SOC and 

the chemical makeup of various battery types was 

examined. Then, using a multi-parameter closed-

loop feedback system, AEKF determined the 

precise estimation of SOC. 

According to the findings, the highest 

SOC error is less than 3%. The accuracy of the 

SOC estimates is hampered by the battery's aging. 

In Ref. [35], a novel approach to estimating SOC of 

LIB based on AEKF was put out. A straightforward 

optimization approach is used to update the battery 

aging model, and AEKF predicted the SOC for 

various battery ages.  

The findings indicated that the SOC error 

is under 4%. The battery SOC was calculated using 

AEKF based on the fractional-order model since it 

provides a better explanation of the behavior of the 

battery. A hybrid estimates technique of SOC and 

capacity based on the AEKF multi-time scale 

framework is presented in Ref. [36] to address the 

issue of current measurement offset interference to 

SOC estimation, which significantly enhances the 

robustness and accuracy of SOC estimation. 

 

3.3.4 Sigma-Point Kalman Filter (SPKF): Since the 

nonlinear element of the OCV-SOC function is 

omitted for EKF, the linearization of the function is 

enlarged close to the previous mean, which results 

in a clear SOC estimate mistake. As a result, EKF 

struggles to deliver enough performance in 

applications that demand high SOC prediction 

accuracy. The SOC estimate methods based on 

SPKF software were proposed. The findings 

showed that SPKF could provide SOC estimate 

accuracy that was greater than EKF. A SOC 

estimate approach based on an electrochemical 

model and employing an adaptive square root 

sigma point Kalman filter (ASRSPKF) with 

equality constraints was presented in Ref. [37]. The 

results show that ASRSPKF has outstanding 

performance. Compared with AEKF, its accuracy is 

improved by 30%, and its convergence time is 

shortened by 88%. 
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3.3.5 Unscented Kalman Filter (UKF): The 

traceless transformation and conventional KF are 

the ancestors of UKF. Under the linear assumption, 

nonlinear system equations may be applied to the 

conventional Kalman filter through traceless 

transformation. UKF does not ignore higher-order 

terms due to linearization, so it has high estimation 

accuracy. The battery model's parameters are 

temperature-sensitive. In Ref. [38], the temperature 

was used to adjust the model parameters before 

UKF was used to predict SOC. Several enhanced 

UKF algorithms were created to enhance the 

performance of traditional UKF. In Ref. [39], the 

battery model was trained using an RBF network, 

and the SOC was calculated using SRUKF. The 

findings indicated that SRUKF and EKF both had 

greater SOC estimate accuracy. The square root 

unscented Kalman filter employing spherical 

transform (Sqrt-UKFST) was created to predict 

battery SOC in Ref. to lessen the computation 

needs of the unscented transformation in UKF. 

RMSE and maximum error grew by 37% and 44%, 

respectively, in comparison to EKF. Compared to 

UKF, the calculating need is 32% lower. The fuzzy 

inference technique was used to optimize UKF to 

increase its robustness. The more reliable modified 

UKF algorithm has a SOC error under the UDDS 

condition that is within 1.76 percent.  

3.3.6 Adaptive Unscented Kalman Filter (AUKF): 

AUKF is an improvement over UKF that allows for 

automated noise covariance adjustment in SOC 

estimate. In Ref. [40], the AUKF was used to 

estimate battery SOC. The AUKF state model was 

updated in real-time while model parameters were 

online discovered using the recursive least squares 

approach.  

The findings demonstrated that the joint estimation 

technique could lower the SOC estimate error. The 

effectiveness of AUKF, AEKF, UKF, and EKF in 

SOC estimate based on a 2nd order RC model has 

been evaluated by Mara et al. [41]. The outcomes 

showed that AUKF performed the best. Only 

0.028% was the absolute average error. An 

enhanced AUKF based on Sage-Husa maximum 

posterior estimate was suggested for SOC 

estimation to calculate the error covariance 

adaptively.  

3.4 Observer-based method: Based on the observed 

values of the system's external variables, the state 

observer can determine the estimated values of the 

state variables. Luenberg presented the idea and 

building approach of the state observer to realize 

state feedback or other demands for control 

systems. State feedback technology may now be 

used practically, and many parts of control 

engineering have benefited from the introduction of 

the state observer. g. In recent years, observer-

based methods such as the Luenberger observer 

(LO),the proportional-integral observer (PIO), and 

the H-infinity/H∞ observer (HIO) have been used 

extensively for battery state estimation. 

3.4.1 Luenberger Observer (LO): The LO is 

frequently employed in time-varying, nonlinear, 

and linear systems. An adaptive Luenberger 

observer (ALO) based technique for online battery 

pack SOC estimation was put in. A stochastic 

gradient technique was used to change the observer 

gain. A LO for SOC estimate was created based on 

a nonlinear fractional battery model. The Lyapunov 

direct technique can guarantee global asymptotic 

stability. 

3.4.2 PI Observer (PIO): It is effective to estimate 

the state of systems with unknown input 

disturbances using the PIO. In Ref. [127], a PIO-

based SOC estimate approach based on a 

straightforward RC battery model was developed. 

An observer based on a dual-circuit was created by 

Tang et al. The capacity error and starting error 

were addressed by the parameters-normalized PIO, 

and the impact of the drifting current was limited 

by the current integrator. The experiment's findings 

demonstrated that even when the initial SOC was 

unknown, this method's calculation complexity was 

low but its accuracy was great. 

3.4.3 H-infinity/H∞ Observer (HIO): The resilience 

of the erroneous starting system state and unknown 

disruption from inaccurate or unidentified 

statistical features of modeling and measurement 

mistakes can be ensured by the HIO. An approach 

using an HIO and a hysteresis model was suggested 

in Ref. [42] to account for the mode uncertainties 

caused by current, temperature, and aging. For the 

SOC estimation of a battery pack, Zhu et al. [43,44] 

created an HIO with dynamic gain that may lessen 

the negative effects of the non-Gaussian model and 

measurement errors. In addition, the observer 

design criterion was formed as the linear matrix 

inequality (LMI) for easy computation. Liu et al. 

[45] developed an HIO using a switched battery 

model to estimate the Electromotive force (EMF) 

for SOC. The switched model considered the 

relaxation effect and the relationship between EMF 

and SOC. 

3.5 Data-driven based method: The data-driven 

approaches treat the battery as a "black box" and 

use a significant quantity of quantifiable input and 

output data to learn about its internal dynamics. 

Neural networks (NN), fuzzy logic, genetic 

algorithms (GA), support vector machines (SVM), 

and others are often used in data-driven-based 

approaches for SOC estimates. 
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3.5.1 Neural Network (NN) method: Another 

subset of artificial intelligence is the neural 

network. It is based on a straightforward simulation 

of the human brain and accepts training mostly 

using input and output samples to match the 

mapping function relations. By adjusting the model 

weight and deviation, it increases the model's 

accuracy. Two steps may be distinguished in this 

procedure. The first is a procedure known as 

positive calculation, which primarily involves 

calculating each unit from the input layer to the 

output layer.The propagation of erroneous echos is 

the second.The input layer in Figure 2 primarily 

consists of battery performance indicators 

including current, voltage, temperature, and 

internal resistance. The estimated SOC of the 

battery is represented in the output layer.The 

system's activation mechanism is the secret layer. 

According to Xia Kegang et al.'s research, Figure 3 

depicts the neural network algorithm's fundamental 

processing flow. The procedure is reliable and 

accurate, according to the findings of the 

experiments. 

 

 
Figure 2. SOC estimation principle of neural 

network. 

 

The benefit of this approach is that it is 

quick and simple to estimate the SOC 

appropriately.The experiment shows that the 

convergence speed and precision of the parallel and 

global searching strategies are better.The 

drawbacks of this approach are also readily 

apparent, mostly due to the need for a substantial 

quantity of training data to complete the training 

system 

 

 
Figure 3: Process of neural network. 

 

Its accuracy is significantly influenced by 

training data and training techniques. It also 

requires more research since its method is very 

complicated and requires a lot of calculations in 

practice. 

3.5.2 Fuzzy Logic method: To account for the 

battery's nonlinear dynamics, a fuzzy NN (FNN) 

basic battery model was developed. To estimate the 

SOC, Lee et al. [46] developed a learning system 

made up of learning controllers, FNNs, and 

cerebellar-model-articulation-controller networks. 

A simple-structure merging FNN for SOC 

estimation was createdby combining a reduced-

form genetic algorithm (RGA) with a B-spline 

membership function (BMF)-based FNN. 

3.5.3 Genetic Algorithm (GA): For further SOC 

estimate, the GA is often utilized to determine the 

battery model parameter. A unique SOC estimate 

approach was created by Chen et al. [47] using 

genetic algorithms and the grey model (GM). 

Higher precision and repeatability were brought 

using a genetic algorithm. 

3.5.4 Support Vector Machine (SVM): The SVMs 

are a group of connected supervised learning 

techniques that may accurately and universally 

estimate any multivariate function. In Ref. [48], an 

improved SVM for a regression-based SOC 

estimate approach was put forward. The outcomes 

demonstrated that this approach was both easier to 

use and more precise than that based on artificial 



 

       

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 5, Issue 7 July 2023,  pp: 699-707  www.ijaem.net  ISSN: 2395-5252 

 

 

 

   

DOI: 10.35629/5252-0507699707          |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 705 

neural networks (ANNs). To calculate battery 

SOC,integrated least-square support vector 

machines (LSSVM) with adaptive unscented 

Kalman filters (AUKF). The battery model can be 

accurately established and updated even with 

limited training samples 

 

IV CONCLUSION 
In the field of electric vehicles, lithium 

batteries have become a research hotspot with their 

advantages. SOC estimation, as a very important 

and challenging part of the battery management 

system, will remain a research hotspot in the future. 

This review discusses the current SOC estimation 

in combination with specific research and classifies 

the existing methods, which is of great significance 

to future research. 
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